Electric Fields Past Paper Questions - 1. The force between two point charges is F when they are separated by a distance r. If the separation is increased to 3r what is the force between the charges? - $\mathbf{A} \qquad \frac{F}{3r}$ - $\mathbf{B} \qquad \frac{F}{9r}$ - $C \qquad \frac{F}{3}$ - $\mathbf{D} \qquad \frac{F}{9}$ (Total 2 marks) 2. Two parallel metal plates of separation a carry equal and opposite charges. Which one of the following graphs, \mathbf{A} to \mathbf{D} , best represents how the electric field strength E varies with the distance x in the space between the plates? (Total 2 marks) 3. Two horizontal parallel plate conductors are separated by a distance of 5.0 mm in air. The lower plate is earthed and the potential of the upper plate is +50 V. Which line, **A** to **D**, gives correctly the electric field strength, E, and the potential, V, at a point midway between the plates? | | electric field strength E/V m ⁻¹ | potential V/V | |---|---|---------------| | A | 1×10^4 upwards | 25 | | В | 1×10^4 downwards | 25 | | С | 1×10^4 upwards | 50 | | D | 1×10^4 downwards | 50 | (Total 2 marks) 4. The diagram shows how the electric potential varies along a line XX' in an electric field. What will be the electric field strength at a point P on XX' which is mid-way between R and S? - **A** 5.0 V m^{-1} - **B** 10 V m^{-1} - $C = 20 \text{ V m}^{-1}$ - $\mathbf{D} \qquad 30 \text{ V m}^{-1}$ (Total 2 marks) **5.** (a) Complete the table of quantities related to fields. In the second column, write an SI unit for each quantity. In the third column indicate whether the quantity is a scalar or a vector. | quantity | SI unit | scalar or vector | |-------------------------|---------|------------------| | gravitational potential | | | | electric field strength | | | | magnetic flux density | | | **(3)** - (i) A charged particle is held in equilibrium by the force resulting from a vertical electric field. The mass of the particle is 4.3 × 10⁻⁹ kg and it carries a charge of magnitude 3.2 × 10⁻¹² C. Calculate the strength of the electric field. (ii) If the electric field acts upwards, state the sign of the charge carried by the particle - 6. (a) An electron travels at a speed of $3.2 \times 10^7 \, \mathrm{ms}^{-1}$ in a horizontal path through a vacuum. The electron enters the uniform electric field between two parallel plates, 30 mm long and 15 mm apart, as shown in the figure below. A potential difference of 1400 V is maintained across the plates, with the top plate having positive polarity. Assume that there is no electric field outside the shaded area. | (i) | Show that the electric field strength between the plates is $9.3 \times 10^4 \text{ Vm}^{-1}$. | | |------|---|--| | | | | | (ii) | Calculate the time taken by the electron to pass through the electric field. | | | | | | **(3)** (Total 6 marks) | | (iii) | Show that the acceleration of the electron whilst in the field is 1.6×10^{16} m s ⁻² and state the direction of this acceleration. | | |-----|---------------|--|-------| (5) | | (b) | Dete
the f | rmine the magnitude and direction of the velocity of the electron at the point where it leaves ield. | | | | | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | | | | | | ••••• | | | | | | | (3) | | | | (Total 8 ma | arks) |