Electric Fields Past Paper Questions

- 1. The force between two point charges is F when they are separated by a distance r. If the separation is increased to 3r what is the force between the charges?
 - $\mathbf{A} \qquad \frac{F}{3r}$
 - $\mathbf{B} \qquad \frac{F}{9r}$
 - $C \qquad \frac{F}{3}$
 - $\mathbf{D} \qquad \frac{F}{9}$

(Total 2 marks)

2.

Two parallel metal plates of separation a carry equal and opposite charges. Which one of the following graphs, \mathbf{A} to \mathbf{D} , best represents how the electric field strength E varies with the distance x in the space between the plates?

(Total 2 marks)

3. Two horizontal parallel plate conductors are separated by a distance of 5.0 mm in air. The lower plate is earthed and the potential of the upper plate is +50 V.

Which line, **A** to **D**, gives correctly the electric field strength, E, and the potential, V, at a point midway between the plates?

	electric field strength E/V m ⁻¹	potential V/V
A	1×10^4 upwards	25
В	1×10^4 downwards	25
С	1×10^4 upwards	50
D	1×10^4 downwards	50

(Total 2 marks)

4.

The diagram shows how the electric potential varies along a line XX' in an electric field. What will be the electric field strength at a point P on XX' which is mid-way between R and S?

- **A** 5.0 V m^{-1}
- **B** 10 V m^{-1}
- $C = 20 \text{ V m}^{-1}$
- $\mathbf{D} \qquad 30 \text{ V m}^{-1}$

(Total 2 marks)

5. (a) Complete the table of quantities related to fields. In the second column, write an SI unit for each quantity. In the third column indicate whether the quantity is a scalar or a vector.

quantity	SI unit	scalar or vector
gravitational potential		
electric field strength		
magnetic flux density		

(3)

- (i) A charged particle is held in equilibrium by the force resulting from a vertical electric field. The mass of the particle is 4.3 × 10⁻⁹ kg and it carries a charge of magnitude 3.2 × 10⁻¹² C. Calculate the strength of the electric field.
 (ii) If the electric field acts upwards, state the sign of the charge carried by the particle
- 6. (a) An electron travels at a speed of $3.2 \times 10^7 \, \mathrm{ms}^{-1}$ in a horizontal path through a vacuum. The electron enters the uniform electric field between two parallel plates, 30 mm long and 15 mm apart, as shown in the figure below. A potential difference of 1400 V is maintained across the plates, with the top plate having positive polarity. Assume that there is no electric field outside the shaded area.

(i)	Show that the electric field strength between the plates is $9.3 \times 10^4 \text{ Vm}^{-1}$.	
(ii)	Calculate the time taken by the electron to pass through the electric field.	

(3)

(Total 6 marks)

	(iii)	Show that the acceleration of the electron whilst in the field is 1.6×10^{16} m s ⁻² and state the direction of this acceleration.	
			(5)
(b)	Dete the f	rmine the magnitude and direction of the velocity of the electron at the point where it leaves ield.	
	•••••		
	•••••		
	•••••		
	•••••		
	•••••		
			(3)
		(Total 8 ma	arks)